
Pergamon 
0021--8928(95)00041-0 

J. AppL Maths Mech~ Vol. 59, No. 3, pp. 343-352, 1995 
Copyright © 1995 Elsevier Science Ltd 

Printed in Great Britain. All rights reserved 
0021--8928/95 $24.00+0.00 

THE PMNLEVI  PARADOXES AND THE DYNAMICS OF 
A BRAKE SHOEt 

Yu.  I. N E I M A R K  a n d  N. A.  F U F A Y E V  

Nizhnii Novgorod 

(Received 11 April 1994) 

Using experience gained in studies of the celebrated Palnlev6--Klein example [1, 2], a mathematical model of a brake shoe is 
constructed that avoids the Palnlev~ paradoxes. A qualitative analysis of this model (using, in particular, the method of point 
mappings) has enabled ~te nature of the possible motions of a brake shoe to be ascertained, and has enabled self-excited oscillations 
to be observed which may be attributed to dry friction with a characteristic curve, no part of which is descending. As far as is 
known, this is the first r~w.ord of this phenomenon, quite normal for automatic control systems, in simple mechanical systems 
(without servoconstraints). 

The Painlev6 paradoxes [3] were encountered [4] when equations of motion were set up for a brake 
shoe. It turned out that for certain relationships between the physical parameters the equations of motion 
are either inconsistent or indeterminate. Postulating that a brake shoe, upon contact with a wheel, 
experiences "frictional impact", possible consequences of this assumption were considered and the 
following conclusions ensued: the lack of experimental data precludes proposing any definitive solution 
of the problem; up to the present there are no conclusive answers to the questions raised. 

In this paper answers will be proposed to these questions, in any ease for a brake shoe: equations of 
motion, avoiding the Painlev6 paradoxes, will be formulated ~taking into account either tangential or 
normal elasticities of the shoe. These equations will be used to make a qualitative study of brake-shoe 
dynamics and the conditions for impact interactions of the shoe with the wheel to occur when the 
tangential stiffness increases without limit; self-excited oscillations of the shoe are observed when its 
normal stiffness is taken into consideration. 

1. T H E  E Q U A T I O N S  OF M O T I O N  OF A B R A K E  SHOE AND THE 
PAINLEVI~ PARADOXES 

Let  P be a brake :shoe, acted on by a constant force F, capable of rotating about a fixed vertical axis 
O1 (see Fig. 1). A wheel Q, driven by a constant torque M, rotates about a fixed axis O parallel to O1. 
The bodies P and Q interact on contact, through forces of Coulomb (dry) friction. 

According to the notation in Fig. 1, the equations of motion of the system, based on the laws of classical 
mechanics that app]ty when the shoe is clamped onto the wheel, are 

J¢o = M -  rT, b ( N -  F)  = aT, T = - f l N I s g n ¢ o  (1.1) 

where f is the coefficient of sliding friction, J is the moment of inertia of the wheel and T and N are 
the tangential and normal components of the interaction forces of the wheel and the shoe. It follows 
from (1.1) that 

N = b F [ b - a f  sgn (coN)] -I (1.2) 

Assigning different signs to the quantities F, 0~, b-af  and N and determining the sign of N from (1.2), 
we obtain a table in which the lowest row lists the signs of the normal reaction N found from (1.2) 
according to the signs of  F, to, b -a f  and N postulated in the previous rows. 

tPrikl. Mat. Mekh. Vol. 59, No. 3, pp. 366-375, 1995. 

343 



344 

1 
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Fig. 2. 
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~ f  + +  - _ + +  - _ + +  - _ + + 

N + - + - + - + - + - + - + - 

N + +  - + + +  + - - + - - - + + 

This table has been drawn up on the assumption that the shoe-wheel constraint is bilateral. In the 
case of a unilateral constraint the assumption N < 0 must be excluded. The Palnlev6 paradoxes state 
that, as follows from the table, when b - a f  < 0, to > 0, neither of these hypotheses works: if one assumes 
that N > 0, it follows from (1.2) that N < 0; but if one assumes that N < 0, it follows from (1.2) that 
N > 0. If to < 0, however, both hypotheses N > 0 and N < 0 are admissible. 

We know [1-3, 5, 6] that the Painlev6 paradoxes can be eliminated by taking the longitudinal or trans- 
verse elasticity of one of the touching bodies into account. We shall deal here with two models of a 
brake shoe: in the first, allowance is made for the longitudinal (tangential) stiffness k of the shoe; in 
the second, the active factor will be the transverse (normal) stiffness kl. 

2. A L L O W A N C E  FOR T H E  T A N G E N T I A L  E L A S T I C I T Y  OF T H E  S H O E  

Figure 2 is a working model of a braking device allowing for tangential elasticity: a plate H of negligibly 
small mass, attached to the shoe by springs, can move along the shoe. Let ~ be the displacement of the 
plate from the position at which the springs are slack. We set up the equations of motion on the 
assumption that the plate H, interacting with the rotating wheel by Coulomb forces, does not slide along 
the wheel, that is to say, the following relation holds 

~' = rto (2.1) 

By Coulomb's law, a necessary condition for this to occur is 

kl~l ~< fiNI (2.2) 

In that case the equations of dynamics may be written as 

Jco = M -  rk , b ( N -  e )  = (2.3) 

Equations (2.1) and (2.3) describe the motion of the representative point in the phase plane (~, to) 
in a strip containing the origin, whose boundaries are determined from condition (1.2). 

Define dimensionless variables by ~ = ~r -a, x = trkV2j "-t/2, F 0 = fFkqr -1, No = fnK -lr-1, M0 = 
Mk-lr -2, o = afb -a. Then, retaining the previous notation for the quantities ~0, F0, No, M0, we write the 
equations of motion as 

~ = o ~ ,  ta" = M - ~ ( 2 . 4 )  
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Hence it follows that the phase trajectories form a family of concentric circles about the point ~ = 
M, to = 0; if allowance is made for the small viscous friction, they form a family of twisted spirals. It 
follows from (2.2) and (2.3) that the domain ~ in the phase plane (g, to) in which Eqs (2.4) hold is 
determined by the inequalities I ~ I ~< I F + ts~ I, whence it follows that the boundaries of • are the 
numbers ~1 and ~2 defined by 

~1 = F(1 - o) -~ , ~2 = -F(I  + 6) -I (2.5) 

and the domain • itself is defined by the inequalities ~2 < ~ < ~1 if o < 1, F > 0; ~1 < ~ < ~2 if 
o < l , F < 0 ; ~ > ! ~ 2 a n d ~ > ~ l i f o > l , F > 0 ; ~ > ~ l a n d ~ < ~ 2 i f o > l , F < 0 .  

Outside • the phase trajectories form a family of straight lines parallel to the ~ axis, along which the 
representative point moves abruptly up to the boundary of O. The physical meaning of these jumps is 
an infinitely rapid sliding movement of the mass-less plate subject to a finite force. 

The nature of the division of the phase plane into trajectories depends on the relations of the physical 
parameters. In this problem there are three essential physical parameters: F, o and M, which may take 
arbitrary values in the following ranges: --o, < F < oo, 0 ~< 0 < oo, 0 ~< M < oo. The qualitative features 
of the phase portraiit in the (~, to) plane depend on the mutual positions of the points ~ ,  ~1, ~2 and the 
origin. It follows from (2.5) and the fact that ~ = M that 

~1 --~0 = h([--(~) -I' ~1 --~2 =2F( I -~ ) -~  

~0 --~2 = ( h + 2 M ) ( I + o )  -I, h= F + M ( f f - I )  (2.6) 

On the basis of (2.5) and (2.6), one can state that the bifurcation boundaries on the parameter half- 
plane (F, a), (~ > 0) are the straight linesF = 0, a = 1, 7~ = 0, k -- -2M, which divide the half-plane 
into eight domains, as shown in Fig. 3. The phase portraits corresponding to the parameter values in 
these domains are shown in Fig. 4. The motion of the representative point along the boundary ~ = ~1 
or ~ = ~1 occurs only in sections where the phase trajectories merge [7, 8] and is governed by the equations 

to = ~o - ~l* (2.7) 

The direction in which the representative point moves along the boundary is determined by the sign 
of the right-hand side of Eqs (2.7), as given by (2.6). The phase portraits in Fig. 4 and the division of 
the parameter plan(~ into domains corresponding to different types of behaviour (Fig. 3) represent a 
complete solution of the dynamical problem formulated at the beginning of this paper, on the assumption 
that the constraint at the shoe-wheel contact is bilateral. According to these phase portraits, the 
shoe-wheel system, after several "frictional impacts" or otherwise, may approach equilibrium or convert 
into uniformly accelerated motion of the wheel. In the usual case of a unilateral constraint, the shoe 
and wheel may only press on one another, and therefore there is an additional condition N i> 0, which 
reduces to the inequahty 

~> ~, = - F o  -I ' 

following from the second equation of (2.3). 

(2.8) 
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Fig. 4. 

In each phase portrait of Fig. 4 we have plotted a point ~, indicating inwhich part of the plane the 
shape of the phase portrait is preserved. Beyond that part N < 0. It can beseen from the cases presented 
in Fig. 4 that only in cases A, H and G does the phase point never leave the domain of phase space 
defined by the condition ~ > ~. In all other cases, except case B, it leaves that domain. Case B corresponds 
to two possibilities: the phase point will remain in the domain N > 0, approaching the stable equih~'ium 
position ~ ,  or the point will leave the domain, finally moving with uniform acceleration along the line 

= ~2. The domain~of attraction of the stable equilibrium ~ is not largeand it becomes smaller as k 
increases, since ~0 - ~1 --> 0 as k --> ~. This case of paradoxical equilibrium has been pointed out before 
[4], but when k = oo it must be regarded as unrealizable. 
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3. ALLOWANCES FOR NORMAL ELASTICITY 

When allowance is made for normal elasticity, the working model of the brake shoe-wheel system 
is that shown in Fig:. 5. Unlike the previous model, the mass-less plate attached to the shoe by springs 
of stiffness kl may be displaced only transversely. It is also assumed that some arresting device or stop 
is placed on the either side of the shoe; the shoe, after hitting the stop, immediately experiences an 
impact with coefficient of restitution lc < 1. The angle of rotation ¥ of the shoe is measured from the 
position at which the plate touches the wheel and the springs are slack. The angles of rotation of the 
wheel and the shoe are considered positive in the anticlockwise sense. 

The equations of motion of the shoe-wheel system in the domain ¥ < 0 (Yl and Y are the moments 
of inertia of the shoe and the wheel, respectively) are 

J! ¥ "  = ( a f  s g n  to - b ) k l b  ¥ - bF,  Jto" = M - rfok I s g n  (3.1) 

For ¥ ffi 0 and ¥" > 0, when the shoe-wheel contact is broken, an impact occurs against the stop, so 
that the velocity ¥~. after impact is related to the pre-impact velocity ¥'_ by 

¥ +  = -~ 'V_  (o ~< ~c ~ l )  (3.2) 

In dimensionless variables ~ = btkl/2J -1/2, ~ = afo -1, Fo + Fb-lk1-1, Mo = M(rfokl) -1, Jo = bY(brJ1) -1 
the equations of motion (2.1) and (2.2) for co > O, V ~< 0 are as follows (omitting the zero subscript 
from now on) 

V':(o-I)w-F, Jc~':Wsgnw+M (W<0) (3.3) 

¥+ = W-, Jco = M (¥ -. 0) (3.4) 

Equations (3.1) describe the motion of the representative point in the three-dimensional phase space 
(¥, ¥ ' ,  to), ¥ < 0. It follows from these equations that, for any initial data in the domain to < 0, the 
representative point reaches the half-plane co ~> 0 in a finite span of time and then never leaves it. It 
is therefore sufficient to study the structure of the phase space in the domain co ~> 0, i.e. to investigate 
the solution of Eqs (3.3) and (3.4). On the boundary co = 0 of the half-space there is a domain V ~< 
-M of "sliding" motions [7] in which the representative point moves subject to the equation 

V + ¥ : F- oM, (¢o: 0) (3.5) 

This equation is obtained from Eqs (3.1) written as follows (T is the tangential component of the 
reaction): J1¥'" = - ~ T -  bekl - bF, M -  rT = 0 after eliminating the unknown T. 

By (3.5), the phase trajectories in the domain of sliding motions V = -M, co = 0 form a family of 
concentric circles 

1 

Fig. 5. 
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(~.)2 + ( ¥ +  F+  t~M)2 = const (3.6) 

about the point ¥ = -F--~M, ~g" = 0, to = 0. 
The shape of the phase trajectories in the half-space to > 0 is determined by the relationship of the 

essential parameters f, o and M, which agree in meaning with the corresponding parameters of the 
previous model. We note that the representative point, while in the half-plane to t> 0 and moving in 
the domain ¥ / >  -M, moves away from the boundary to = 0, but approaches it when moving in the 
domain ¥/> -M. Hence it follows that a dosed trajectory, if such exists, must contain a section of "sliding" 
motion, and so the search for a limit cycle [7] reduces to studying a point mapping of the half-line ¥ 
= -M, ¥ > 0 into itself (see Fig. 6, where the domain of "sliding" motions is hatched). The fact that 
¥ and ¥" vary independently of the variable to makes it possible to consider the phase trajectories 
projected onto the (~g, ~g) plane, and this considerably simplifies the investigation. 

It follows from Eqs (3.3) and (3.5) that the qualitative division of the phase half-plane ¥, ¥, to/> 0 
into trajectories, projected onto the 0g, ~g) plane, is determined by the mutual positions of the points 
¥1 = F(6 - 1) -1, W2 = -M, ~1/* = - (F  + ~M), and moreover 

l~/2 --Ig, = (Y~((3 -- 1) - I ,  ~1  --~]/2 = ~ ' ( (Y-- I )  - I '  h =  F+(o-1)M (3.7) 

Acamrdingly, we obtain bifurcation boundaries F = 0, ~. = 0 and ~ = 1. This bifurcation portrait is 
identical with the bifurcation portrait shown in Fig. 3 provided the domains C and D are combined, as 
are the domains E and F (the boundary ~. + 2M = 0 turns out to be unimportant for the phase portrait). 

Using (3.7) and Eqs (3.3), we find all possible qualitatively distinct divisions of the (¥, ¥ ' )  plane into 
trajectories (Fig. 7). For values ¥ < 0, W'> 0 only those trajectories on which the representative point 
starts its motion from the ¥ = - M  plane are shown. Arrows indicate trajectories of "sliding" motions, 
in which allowance has been made for a small viscous friction converting the "centre"-type singular 
point into a singular point of the "stable focus" type. Curves with arrows to the right of the curve ¥ = 
0 represent an instantaneous jump of the representative point, due to the shoe impacting on the stop. 
As already remarked, the motion of the phase point ¥ and ~g" is independent of to. The variation of to, 
for its part, is determined by the motion of the pomt 0g, W): it decreases when ¥ - M  and mereases 
when ¥ > -M. 

According to Fig. 7, for all possible shapes of the phase portrait, a stable equilibrium may be reached 
after transients, either at the point ~g = ¥" = 0 or on the surface of "sliding" motions at the point ¥ = 
~. < -M, ¥" = 0. In the first case to increases without limit (uniformly accelerated motion), in the second, 
to = 0. However, apart from such final motions, self-excited oscillations with respect to the variables 
~g and ~" may also occur, accompanied by periodic changes in to with a positive mean. 

Self-excited oscillations may be observed by constructing and investigating a point mapping of the 
half-line ~ = -M, ¥'~> 0, since a dosed trajectory may be formed in the ¥, W" plane only when that 
half-line is crossed. For example, in case A it follows from Fig. 6 that the point mapping ~ = ~(u), 
(u = ~g') for trajectories in the ~g = 0 plane will consist of two transformations; To and T., i.e. 
T (1) = T.To. Otherwise it will consist of T1, T2, T3 and T., that is, T (2) = T.T3T2T1. 

Fig. 6. 
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Let  us first consider  the case T (1) = T .T  o. In  the doma in  A we have a2 __ o - 1 > 0, and  so we can 

write Eqs (2.3) for ~r < 0 in the form 

~ '  - a 2 ~  = - t ~ 2 ~ l ,  J ~  = ~ + M (3 .8 )  

A solut ion of  this equa t ion  for ¥ < 0, satisfying initial condi t ions  t = 0, ~ / =  - M,  ¥" = u, to = 0, is 

W =a-lusho~t +(M + ~l)chff. t  + ~j ,  ~" = u c h o t t - a ( M  + ~l)shff.t  

ct 2 Jt.o = u(ch oft - 1) - tx(M + ~ i  )(sh ff.t - if.t) (3.9) 

Suppose  that  at a t ime t = x0tx-l: ~ = ~0, ¥" = ~6, co = 0. T h e n  we proceed from the solut ion (3.9) to 
the re la t ionship 

cc¥ o = u sh x o - h a  -I ch x o + Foc -~ , ~0 = u ch x o - hot -~ sh x o 

c t u = ( c h x o - l ) - k ( s h x o - X o ) = O ,  ~ . = F + ( o - 1 ) M ,  ~ 2 = o - 1  (3.10) 
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These relations constitute the point mapping To. To obtain the point mapping T., we consider the 
differential equation (3.5) and its integral (3.6), which can be written in this case as 

(~ . )2  + (~ /+  h + M)  2 = (~1/0)2 + ( ¥ 0  + ~' + M)  2 (3.11) 

The representative point reaches the half-line ~ = -M, ¥" > 0 with coordinates ¥ = -M, ¥ = u-. 
Substituting this into (3.7), we obtain 

~-2 = (~/.)2 + (~1/0 + h + M)  - k 2 (3.12) 

Formulae (3.9) and (3.12) constitute the point mapping T (1) = T.T1 for u ~< u., where the number Uo 
= ~/(M(~, + F)) is determined from the condition that the phase trajectory must touch the straight line 
¥ = 0 at the origin of the (¥, ¥ ' )  plane. 

We will now determine an explicit expression for the point mapping T 0) for u ,~ 1. In this ease we 
deduce from equations (3.10) that 

~o =-M-3u2(2h)  -l, ~'o = -2u 

Substituting these expressions into (3.12), we get 

~2 = U2 + 9 )k_2U 4 (3.13) 
4 

Hence it follows that in the neighbourhood of the origin the Lamerey curve has the form of curve 1 
in Fig. 8, indicating the possibility of oscillations with increasing amplitude. If viscous friction is taken 
into account, the Lamerey curve has the form of curve 2 in the neighbourhood of the origin. The point 
u = ff corresponds to the existence of an unstable limit cycle in the phase space. Under perturbations 
u < ~ the system goes into the rest state, but under perturbations u > ~ oscillations occur, i.e. we have 
hard excitation of oscillations. 

In order to show that self-excited oscillations exist in the system, it is sufficient to show that when u 
> ~ the Lamerey curve must cut the bisector of the coordinate angle in the reverse direction. This point 
may correspond to the existence in the phase space of a stable limit cycle, but in the unstable case it 
may indicate the existence of more complicated self-excited oscillations. 

In terms of the notation of Fig. 6, when u > u. the point mapping T (2) consists of the sequence of 
transformations T1, 7"2, T3 and To. Let us consider them in order. The transformation 7"1 is obtained 
from the solution (3.9) of Eqs (3.8) with initial conditions t = 0, ¥ = -M, ¥" = u and to = 0. Suppose 
that at time t = xltz-l: ¥ = 0, ¥ ' =  Ux and co = ¢ol. Then T1 is determined by the expressions 

o.ushx I - k c h x  I + F = 0 ,  otu I=o~uchz I - k s h ' c i  

a3J to l  = t~u(ch x I - 1) - k(sh zl - xl ) (3.14) 

The transformation T2, which describes the result of the inelastic impact of the stop, leaves the quantities 

z7 

z7 a 

Fig. 8. 
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¥ = 0 and to = to1 unchanged, but ¥" instantaneously takes the value ¥~  = ~:ul. To obtain T3, we use 
a solution of  Eqs (%8) satisfying the initial conditions t = 0, ¥ = 0, ¥" -- m~, to -- to1. 

Suppose that at time t = x2ct -~ the phase variables take values ¥ = V0, V' = ¥~, to = 0. Then we find 

the following expression for T3 

• 0 = -~:lx-~u, shx2 - ~ (ch~2 - 1), ¥0 = -Ix~, shx 2 - ~:u t chx 2, 

tx2Jtoj = o~/I sh x 2 w lgu I (ch x 2 - 1) - ct(Wt + M)'c 2 (3.15) 

Formulae (3.14) and (3.15), together with (3.12), represent the required point mapping T (2) for u ~> 
u .  = + e ) ) .  

We will now find an explicit expression for the mapping t2 = ~(u) when u ~. 1. It follows from (3.18) 
that as u ~ ** we have Xx ~ O, u ~ cxMxi q, ul ~ cd4xi q, Jtox ~ Mx1(2a) -1. Substituting this into (3.15), 
we obtain the following limiting relation 

~t 

~aMxa = Onlt, sh x2 + ~tm~fxi "~ (ch x2 -1 )  - ct(¥ I + M)x 2 

which may hold as ~h ~ 0 if x2 also tends to zero. For x2 ~ 1 this relation becomes a quadratic equation 
in x2, the solution of  which gives 

Hence,  using (3.:15), we obtain 

lim ¥ o = - M ( l +  1"~-'~/, lim ¥0 = - r u  
ff-"l '~ '~ / U -- '}~ 

Substituting these expressions into (3.12), we obtain 

~2 = K2u2 + M2(I + K ) -  2kM~/l + ~: 

Thus, as u increases, the curve ~ = ~(u) approaches an asymptote ~ = Ku + const (~: < 1), which 
certainly cuts the bisector of the first quadrant in the (u, ~) plane. This point of  intersection indicates 
that the phase space of  the system contains either a stable limit cycle or more complicated self-excited 
oscillations. 

Computers have been used to construct the point mapping ~ = ~(u), using formulae (3.10)-(3.12) 
for ti < ~. and formulae (3.13)-(3.15) for u > u., with the following numerical values of the physical 
parameters in the domainA (Fig. 3): o = 1.36, M = 1.0, F = 0.36, K = 0.44 and u. = 1.04. The resulting 

z7 

2 

F i g .  9 .  

// 4/ 

I 
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Lamerey diagram is shown in Fig. 9. It corresponds to the existence of simple, single self-excited 
oscillations. At the point where the Lamerey diagram cuts the bisector, the derivative with respect to 
the modulus is less than unity. 
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